

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ УЧРЕЖДЕНИЕ НАУКИ

ИНСТИТУТ ФИЗИЧЕСКОЙ ХИМИИ И ЭЛЕКТРОХИМИИ ИМ. А.Н. ФРУМКИНА РОССИЙСКОЙ АКАДЕМИИ НАУК (ИФХЭ РАН)

Рабочая программа дисциплины Коррозионный мониторинг в научных исследованиях и промышленности

Направление подготовки – 18.06.01 Химическая технология (уровень подготовки кадров высшей квалификации)

Специальность 05.17.03 – Технология электрохимических процессов и защита от коррозии

Москва

2015 год

1. Цели и задачи освоения дисциплины

<u>Цели дисциплины</u> Подготовить аспирантов к научноисследовательской деятельности в области, связанной с разработкой и применением методов коррозионного мониторинга в фундаментальных и прикладных исследованиях, а также в различных отраслях промышленности с учетом современных тенденций развития физико-химической науки.

Освоение аспирантами Задачи дисциплины: теоретических практических основ осуществления коррозионного мониторинга в научных исследованиях и промышленности. Формирование у аспирантов знаний, позволяющих понять закономерности протекающих химических, физикохимических, электрохимических процессов при осуществлении разнообразных мониторинга, методов коррозионного возможности, данных, быстродействие ограничения их применения, интерпретацию различных методов, типы коррозии, которые могут контролироваться; развитие практического опыта пользования полученными знаниями в профессиональной деятельности и повседневной жизни.

2.Место дисциплины в структуре ООП

Настоящая дисциплина «**Коррозионный мониторинг в научных исследованиях и промышленности**» - модуль основной профессиональной образовательной программы высшего образования — программы подготовки научно-педагогических кадров в аспирантуре по специальности 05.17.03-«Технология электрохимических процессов и защита от коррозии».

Обучающийся по данной дисциплине должен иметь фундаментальные представления о физической химии и электрохимии, коррозии. Для обучения по данной дисциплине необходимо высшее образование с освоением курсов теоретической электрохимии и защиты от коррозии в объеме для химических специальностей.

3 Требования к результатам освоения дисциплины

- 3.1. Выпускник, освоивший программу дисциплины, должен обладать следующими универсальными компетенциями:
- способностью к критическому анализу и оценке современных научных достижений, генерированию новых идей при решении исследовательских и практических задач, в том числе в междисциплинарных областях (УК-1);

- способностью проектировать и осуществлять комплексные исследования, в том числе междисциплинарные, на основе целостного системного научного мировоззрения с использованием знаний в области истории и философии науки (УК-2);
- готовностью участвовать в работе российских и международных исследовательских коллективов по решению научных и научнообразовательных задач (УК-3);
 - готовностью использовать современные методы и технологии научной
 - коммуникации на государственном и иностранном языках (УК-4);
- способностью следовать этическим нормам в профессиональной деятельности (УК-5);
- способностью планировать и решать задачи собственного профессионального и личностного развития (УК-6).
- 3.2. Выпускник, освоивший программу дисциплины, должен обладать следующими общепрофессиональными компетенциями:
- способностью и готовностью к организации и проведению фундаментальных и прикладных научных исследований в области химических технологий (ОПК-1);
- владением культурой научного исследования в области химических технологий, в том числе с использованием новейших информационно-коммуникационных технологий (ОПК-2);
- способностью и готовностью к анализу, обобщению и публичному представлению результатов выполненных научных исследований (ОПК-3);
- способностью и готовностью к разработке новых методов исследования и их
- применение в самостоятельной научно-исследовательской деятельности в области химической технологии с учетом правил соблюдения авторских прав (ОПК-4);
- способностью и готовностью к использованию лабораторной и инструментальной базы для получения научных данных (ОПК-5);

- готовностью к преподавательской деятельности по основным образовательным программам высшего образования (ОПК-6).
- 3.3. Выпускник, освоивший программу дисциплины, должен обладать следующими профессиональными компетенциями:
 - освоение и применение в научной работе основных понятий и законов физической химии и электрохимии и защиты от коррозии, знаний основных методов коррозионного мониторинга (ПК-1);
 - формирование как научных, так и технических подходов, необходимых для выбора оптимальных методов коррозионного мониторинга (ПК-2);
 - приобретение навыков самостоятельной работы с лабораторным оборудованием (ПК-3);
 - проведения оценки коррозионной стойкости металлов, сплавов, конструкционных материалов, эффективности многофункциональных покрытий, ингибиторов коррозии, средств временной консервации в лабораторных и производственных условиях; изучение особенностей аналитических, электрохимических, физико-химических, неразрушающих методов коррозионного мониторинга (ПК-4).

4. Структура и содержание дисциплины

Общая трудоёмкость дисциплины составляет 7 зачётных единиц, 252 академических часа, в том числе:

- третий год обучения общая трудоёмкость дисциплины составляет 7 зачётных единиц, 252 академических часа.

4.1 Структура дисциплины

№	Наименование дисциплины	Объем	Вид итогового						
п/п	дисциплины	Всего	Всего аудит.	Из аудиторных Сам. рабо					контроля
			37.	Лекц.	Лаб.	Прак.	КСР.	1	

1	Подпрограмма	7	4	2 - 72	2-		3- 108	зачет
	«Коррозионный				72			
	мониторинг в							
	научных							
	исследованиях и							
	промышленности»							
			Трети	й год об	учения			
2	Подпрограмма	7	4	2	2		3	зачет
	«Коррозионный							
	мониторинг в							
	научных							
	исследованиях и							
	промышленности»							

4.2 Содержание дисциплины

4.2.1 Разделы дисциплины и виды занятий

№ п/п	Раздел Дисциплины		гучебн рудоем а)	-	Самостоятельная работа	
		Лек.	Лаб.	Пр	КСР	
	Трег	пий год) обуче	ния		<u> </u>
1.	Основные критерии выбора методов коррозионного мониторинга	12	12			18
2	Теоретические основы методов коррозионного мониторинга и ускоренных испытаний	12	12			18
3	Методы оценки коррозии: Электрохимические методы коррозионного мониторинга	12	12			18
	Аналитические методы коррозионного мониторинга					
	Физические, физико- химические, неразрушающие методы коррозионного мониторинга					
	Методы оценки склонности материалов к локальной коррозии					

4	Применение методов	12	12		18
	коррозионного мониторинга в				
	научных исследованиях, при				
	проведении ускоренных и				
	стендовых испытаний				
5	Методы коррозионного	12	12		18
	мониторинга				
	многофункциональных				
	защитных покрытий				
6	Методы коррозионного	12	12		18
	мониторинга в				
	промышленности				

4.2.2 Содержание разделов дисциплины

№	Наименование раздела	Содержание раздела	Форма
п/п	дисциплины	(темы)	проведения
			занятий
1		TC 1	Полити
1.	Основные критерии выбора	Классификация методов по месту и	Лекции,
	методов коррозионного	научным принципам осуществления.	лабораторные работы
	мониторинга	Выбор методов на основе учета	раооты
		времени отдельного измерения, типа	
		получаемой информации, связи с	
		оборудованием, применимости к	
		среде, влияния типа коррозии,	
		сложности интерпретации	
		результатов, производственных	
		условий, технологической культуры	
2.	Теоретические основы	Возможности повышения скорости	Лекции,
	методов коррозионного	коррозии при проведении	лабораторные
	мониторинга и ускоренных	коррозионного мониторинга и	работы
	испытаний	ускоренных испытаний. Влияние	
		состава и свойств среды, условий	
		работы материалов, физико-	
		химических свойств материала,	
		выбор показателя коррозии и метода	
		интерпретации результатов в	
		зависимости от типа материала,	
		покрытия, средств защиты, учет	
		контролирующего фактора	

3.	Методы оценки коррозии:	Методы контроля потенциала,	Лекции,
	Электрохимические методы	вольтамперометрии, линейного	лабораторные
	коррозионного мониторинга	поляризационного сопротивления,	работы
		амперометрии нулевого	
		сопротивления, электрохимического	
		импеданса, шума потенциала и тока	
	Аналитические методы	Методы гравиметрии, объемные	
	коррозионного мониторинга	методы, анализа коррозионных сред	
	Физические, физико-	Методы электросопротивления ,	
	химические,	визуально-оптический, магнито-	
	неразрушающие методы	порошковый, цветной	
	коррозионного мониторинга	дефектоскопии, термографии,	
		радиографии, вихревых токов,	
		ультразвуковой, контрольных	
		отверстий, акустической эмиссии,	
		радиометрический	
	Методы оценки склонности	Определение склонности материалов	
	материалов к локальной	к питтинговой, межкристаллитной,	
	коррозии	расслаивающей коррозии,	
		коррозионному растрескиванию	
4.	Применение методов	Методы количественной оценки	Лекции,
	коррозионного мониторинга	скорости коррозии материалов при	лабораторные
	в научных исследованиях,	погружении в жидкие среды, грунты,	работы
	при проведении ускоренных	в камерах влажности, солевого	
	и стендовых испытаний	тумана	
5	Методы коррозионного	Методы количественной оценки	Лекции,
	мониторинга	защитной способности	лабораторные
	многофункциональных	гальванических, химических,	работы
	защитных покрытий	конверсионных и	
		металлонаполненных покрытий	
6	Методы коррозионного	Применение методов	Лекции,
	мониторинга в	поляризационного сопротивления,	лабораторные
	промышленности	определения потенциала,	работы
		амперометрии в коррозионном	
		мониторинге материалов в тепловой	
		и гидроэнергетике; атомной	
		энергетике; нефтегазодобыче;	
		системах ГВС, коммунальном	
		хозяйстве; водооборотных системах,	
		теплоносителях, хладагентах и	
		рабочих телах; на транспорте; в	
		строительстве	

5. Образовательные технологии

- 1. Активные образовательные технологии: лекции, семинары и практические работы. При работе в малочисленных группах целесообразно использовать диалоговую форму проведения лекционных занятий с использованием элементов практических занятий, постановкой и решением проблемных и ситуационных заданий и т.д.
- 2. Сопровождение лекций визуальным материалом с использованием мультимедийных презентаций и демонстрационного эксперимента.
- 3. Участие обучаемых в научной работе и выполнении исследовательских проектов.
- 4. Использование специального программного обеспечения и интернетресурсов для обучения в ходе практических и самостоятельных работ.
- 6. Учебно-методическое обеспечение самостоятельной работы аспирантов. Оценочные средства для текущего контроля успеваемости, промежуточной аттестации по итогам освоения дисциплины.

Виды самостоятельной работы аспиранта: в читальном зале библиотеки, в учебных кабинетах (лабораториях), компьютерных классах и в домашних условиях, с доступом к лабораторному оборудованию, приборам, базам данных, к ресурсам Интернет. Самостоятельная работа подкрепляется учебно-методическим и информационным обеспечением, включающим: учебники, учебно-методические пособия, конспекты лекций, учебное программное обеспечение).

Форма контроля знаний – зачет в конце курса, включающий теоретические вопросы и задачу.

Контрольные вопросы к зачету

- 1. Классификация методов коррозионного мониторинга
- 2. Принципы выбора методов коррозионного мониторинга
- 3. Возможности повышения скорости коррозии при проведении коррозионного мониторинга и ускоренных испытаний
- 4. Выбор показателя коррозии в зависимости от типа материала, покрытия, средств противокоррозионной защиты
- 5. Учет контролирующего фактора при выборе метода ускорения коррозионного процесса
- 6. Применение методов контроля потенциала и вольтамперометрии в коррозионном мониторинге.

- 7. Теоретические основы и применение методов линейного поляризационного сопротивления, амперометрии нулевого сопротивления в коррозионном мониторинге
- 8. Применение методов электрохимического импеданса, шума потенциала и тока в коррозионном мониторинге
- 9. Особенности применения методов гравиметрии, анализа водорода и кислорода, коррозионных сред в коррозионном мониторинге
- 10. Применение метода электросопротивления.
- 11. Методы: визуально-оптический, магнито-порошковый, цветной дефектоскопии, термографии в коррозионном мониторинге.
- 12. Неразрушающие методы коррозионного мониторинга
- 13. Методы определение склонности материалов к ллокальной коррозии питтинговой, межкристаллитной, расслаивающей коррозии, коррозионному
- 14. Методы количественной оценки скорости коррозии материалов при погружении в жидкие среды, грунты, в камерах влажности, солевого тумана
- 15. Методы количественной ускоренной оценки защитной способности многофункциональных покрытий
- 16. Применение методов поляризационного сопротивления, определения потенциала, амперометрии в коррозионном мониторинге конструкционных материалов в промышленности

7. Учебно-методическое и информационное обеспечение дисциплины а) основная литература:

- 1. Р.А. Кайдриков, С.С.Виноградова Б.Л. Журавлев Кайдриков Р.А. Электрохимические методы оценки коррозионной стойкости многослойных гальванических покрытий: монография Федер. Агенство по образованию, Казан. гос. технол. ун-т, Казань: КГТУ, 2010. 140 с.
- 2. Синько В.Ф. Комплексная электрохимическая защита от коррозии сооружений и оборудования в грунтах и жидких средах. Монография. Москва. ВНИИКоррозии. 2008- 310 с.
- 3. Л.М. Апраксина, В.Я. Сигаев. Коррозия металлов и методы оценки их химической стойкости: учебно-методическое пособие/ГОУВПО Спб ГТУРБ.-Спб, 2008 45 с.
- 4. Phillip A. Schweitzer. FUNDAMENTALS of METALLIC CORROSION. Atmospheric and Media Corrosion of Metals. CORROSION ENGINEERING HANDBOOK (SECOND EDITION), 2007 750 p.
- 5. Ю.А. Стекольников, Н.М. Стекольникова. Физико-химические процессы в технологии машиностроения: Учеб. пособие. Елец: Издательство Елецкого государственного университета имени И.А. Бунина, 2008 136 с.

- 6. С.С. Виноградов, Р.А. Кайдриков, Б.Л. Журавлев, Л.Г. Назмиева, В.Э. Ткачева. Коррозионный мониторинг и контроль эффективности защиты металлических конструкций: учебное пособие / Казань, 2007 100 с.
- 7. Н.Г. Ануфриев, А.П. Акользин. Определение электрохимических характеристик вторичных протекторных сплавов на основе алюминия и цинка// Практика противокоррозионной защиты, №4, 2009, с.46-50.
- 8. Н.Г. Ануфриев, Атеф Эль-Сайед М. Ускоренный метод оценки коррозивности кислотных растворов по отношению к углеродистой стали// Коррозия: материалы, защита, №1, 2010, с.44-48.
- 9. Н.Г. Ануфриев. Электрохимическая оценка защитной способности конверсионных покрытий на цинке// Коррозия: материалы, защита, № 11, 2010, с.32-37.
- 10. Н.Г. Ануфриев. Новые возможности применения метода линейного поляризационного сопротивления в коррозионных исследованиях и на практике// Коррозия: материалы, защита, №1, с.36-43, 2012.
- 11. А.И. Маршаков, Н.А. Петров, Т.А. Ненашева, М.А. Петрунин, В.Э. Игнатенко, А.А. Рыбкин. Мониторинг внешней коррозии подземных стальных трубопроводов. // Коррозия: материалы, защита. 2011, №4, с. 10-15.
- 12. Физикохимия и методы анализа твердых композиционных материалов. Модуль: «Коррозионный мониторинг в нефтегазовой отрасли»: учебнометодический комплекс / Ю.И. Капустин М.: РГУ нефти и газа им. И.М. Губкина, 2012. 60 с.

б) дополнительная литература:

- 1. Туфанов Д.Г. Коррозионная стойкость нержавеющих сталей и чистых металлов. Справочник.— М.: Металлургия, 1973, 351 с.
- 2. Кушнаренко В.М., Гринцов А.С., Оболенцев Н.В. Контроль взаимодействия металла с рабочей средой Оренбурского газоконденсатного месторождения.— М.: ВНИИЭгазпром, 1989, с.Обз.информ. Сер.Коррозия и защита сооружений в газовой промышленности, вып. 4. ,43 с.
- 3. Сорокин В.И., Борискин А.В. Системы контроля коррозивности технологических сред —Заводская лабораторрия, 1997г., N5, с.7-10.
- 4. Розенфельд И.Л., Жигалова К.А. Ускоренные методы коррозионных испытаний металлов., М., Металлургия., 1966., 348 с.
- 5. М.Н. Фокин, К. А. Жигалова—Методы коррозионных испытаний. М.: Металлургия, 1986, 80 с.
- 6. Коррозия. Справ. изд. Под ред. Л.Л.Шрайера. Пер. с анг.–М.: Металлургия, 1981, 632 с.
- 7. В.С. Новицкий, Л.М.Писчик. Коррозионный контроль технологического оборудования. Киев, Наукова Думка, 2001г.
- 8. Р.А. Кайдриков, Б.Л.Журавлев, А.П.Светлаков, С.С.Виноградова. Физические методы в коррозионных исследованиях : учеб. пособие // Казань : Изд-во Казан. гос. технол. ун-та, 2003. 56 с.

в) программное обеспечение и Интернет-ресурсы:

* * *
Журналы и книги издательства American Chemical Society (ACS)
Журналы и книги издательства American Physical Society (APS)
Журналам и труды конференций электрохимического общества (Тho
Electrochemical Society(ECS))
Архив научных журналов издательства Oxford University Press
Журналы и книги издательства Trans Tech Publications inc.
Журналы и конференции Optical Society of America (OSA)
"Обзорный журнал по химии" на платформе E-library
Мультидисциплинарный журнал естественнонаучного профиля "SCIENCE"
издательства American Association for the Advancement of Science (AAAS)
Патентная База данных Questel
Реферативная база данных компании Cambridge Scientific Abstracts в области
технологии, материаловедения и нанотехнологий
Реферативная база INSPEC, Institution of Engineering and Technology
Коллекция из 104 журналов Академиздатцентра "Наука"
<u>БД ВИНИТИ PAH on-line</u> –крупнейшая в России баз данных по естественным
точным и техническим наукам
База данных БЕН РАН
EBSCO Publishing и справочная база "DynaMed"
Журналы издательства Institute of Physics (IOP)
Журналы и книги издательства Elsevier
152 журналов издательства Elsevier за 2000-2009 годы на платформо eLIBRARY.RU
Журналы и книги издательства Wiley-Blackwell
Журналы издательства Nature Publishing Group
Журналы и базы данных по основным направлениям развития химических наук
The Royal Society of Chemistry (RSC)
Архивы издательства The Royal Society of Chemistry (RSC)
Журналы издательства The Royal Society Publishing
Журналы и книги издательства Springer
Реферативная база данных Inspec, Institution of Engineering and Technology
Ресурсы издательства Taylor&Francis (компания Metapress)
Журналы издательства Sage Publications
Журналы издательства American Institute of Physics
O-Y HAVO A H A. DAH 1.44//

Сайт ИФХЭ им. А. Н. Фрумкина PAH -http://www.phyche.ac.ru

Сайт Российского общества гальванотехников и специалистов в области обработки поверхности- http://www.galvanicrus.ru

Сайт BAKOP -http://www.corrosion.ru

Сайт Ассоциации КАРТЭК -http://www.cartec.cnt.ru

8. Материально-техническое обеспечение дисциплины

НОК располагает материально-технической базой, обеспечивающей проведение всех видов теоретической и практической подготовки,

предусмотренных учебным планом, а также эффективное выполнение диссертационной работы:

Аудитория для проведения лекций, оснащенная компьютерами и проектором для показа слайдов компьютерных презентаций, усилителями звука, препаративным столом и системой вентиляции (для показа демонстрационного эксперимента). Все ПК подключены к развитой корпоративной компьютерной сети и к международным и российским электронной научным базам данных И библиотеке основными международными научными журналами. Для выхода в Internet используются широкий цифровой канал в 100 Мбит/с.

Практические занятия проводятся в научных лабораториях, оснащенных всем необходимым лабораторным оборудованием и реактивами, приборным и химическим обеспечением учебного процесса по ознакомлению с многофункциональными защитными покрытиями на металлах и сплавах и методам их контроля: рН-метры, потенциостаты-гальваностаты, коррозиметры, профолограф, металлографический и электронный микроскопы, установки для проведения коррозионных испытаний (камеры, проточные ячейки и т.д.), термостаты, стеклянная и фарфоровая химическая посуда, химические реактивы и др..

Программа подготовлена в соответствии с приказом Министерства образования и науки Российской Федерации от 30 июля 2014 г. № 883 «Об утверждении федерального государственного образовательного стандарта высшего образования по направлению подготовки 18.06.01 Химическая технология (уровень подготовки кадров высшей квалификации)».

Автор:

ведущий научный сотрудник лаборатории высокотемпературных коррозионных испытаний в водных средах, к.х.н. Ануфриев Н.Г.

Програм	ма	рассмотрена	И	утверж	дена	на	заседани	И	секции
«Химическое	col	противление	мате	риалов,	защи	та	металлов	И	других
материалов от	кор	розии и окисл	ения	при Уче	ном сс	вет	е Институт	a	
протокол № _	O'	Γ							

Председатель секции — заместитель директора института по научной работе, заведующий лабораторией физико-химических основ ингибирования коррозии металлов д.х.н., профессор Кузнецов Ю.И.